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Overview

1. Basics of Acoustic Waves
• Sensing Principles
• Acoustic Wave Modes
• Devices

2. Layer Guided Acoustic Waves
• Love Waves & Plate Modes with Layers
• Generalized Sauerbrey and Kanazawa & Gordon

3. Advanced Concepts
• Higher Frequency and Multiple Modes
• Interfacial Slip/Coupling
• Super-hydrophobic Sensor Principles



Basics of Acoustic Waves



QCM Sensing Principles

Sharp resonance

Frequency given by quartz thickness, w

vs=fλ ⇒ f=2vs/w

Thickness Shear Mode Vibration

w

Mass Loading or Immersion
Frequency reduces due to mass

Resonance broadens due to polymer/liquid

Sauerbrey equation    ⇒ ∆f∝−f2∆m/A

Kanazawa & Gordon ⇒ ∆f∝−√(ηρ) f3/2

Sensitivity to mass or viscosity-density product increases with frequency



Liquids and Penetration Depth

Shear Mode Vibration
Entrains liquid

Liquid oscillation decays
Penetration depth

δ=(η/πfρ)1/2

Liquid Sensing
Sense liquid mass (via viscosity-density product) within penetration depth

QCM SAW

For water 5 MHz δ ~ 250 nm 500 MHz   δ ~ 25 nm

Penetration depth/sensing zone decreases with frequency



Acoustic Waves 

QCM versus  SAWAcoustic Waves

QCM – frequency determined by thickness  

SAW – frequency determined by fingers



Acoustic Wave Modes 

Delay Lines

Mirror Mirror

LT

LR

L

Resonators
Mirror

LT

Mirror
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Acoustic Waves - Comparisons 

Mode Rel. Sens. Complexity Robustness Gas/Liquid
QCM          Low Low/Xtal Med g+l

SAW High Med/metal on Xtal High g

Love High Med/film+metal+Xtal High g+l
STW High Med/metal on Xtal High g+l

Lamb High High/membrane Low g+l

APM Med Med/metal on Xtal Med g+l

Thickness Shear Mode
Quartz crystal microbalance (QCM)

Surface Acoustic Waves (SAWs)
Rayleigh waves, Love waves, Surface transverse waves (STWs), 

Lamb waves/Flexural plate waves (FPWs)

Acoustic Plate Modes (APMs)
Shear horizontally polarised SAWs (SH-SAWs)

Surface skimming bulk waves (SSBWs)



Surface Acoustic Waves

Surface Acoustic Wave
Mechanical wave along a surface

+electric field

Detection of attached mass, density-

viscosity product and conductivity
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Layer Guided Acoustic Waves



Love Waves versus SH-APMs

Love Wave

Layer guided SH-SAW with vl < vs

Surface localised wave
Increased sensitivity

“QCM with propagation”
Substrate resonance
Sensing via both faces

SH-APM

Increased sensitivity versus isolation 

between sensing face and transduction
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Generalized Love Waves - Dispersion Curve

Shear mode in substrate-to-shear mode in layer transition

1st Mode 2nd Mode 3rd Mode

Increased mass/liquid sensitivity related to slope of dispersion curve

(guiding layer thickness)



∆m is mass per unit area being sensed, z=df/vl is the normalized thickness

"Rigid" mass ⇒ Mass sensitivity is slope of dispersion curve1
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Layer-Guided SH-APMsLove Waves
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Polymer Waveguide on Polymer Substrate
Complex velocity shift
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Advanced Concepts



Love Waves and Higher Frequency

Established QCM Sensor Principle
Mass sensitivity ∝ Fundamental frequency
Higher frequency ⇒ Higher mass sensitivity

Love Waves on a (Semi-) Infinite Substrate
Controlling factor is guiding layer thickness x frequency z = d/λl = df/vl

Mass sensitivity ∝ Frequency × Slope Factor

Slope operating point zo ∝ d × f
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Love Waves and Frequency Hopping

Mode Change

Transition c)  ⇒ Lower mass sensitivity

Transition d)  ⇒ Higher mass sensitivity

No Mode Change

Transition a)  ⇒ Higher mass sensitivity

Transition b) ⇒ Lower mass sensitivity
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“Slip” Boundary Condition v Trapped Mass 
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Newtonian Liquid
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Slip length to penetration depth

Negative b  ⇒ Effective interface moves to
liquid side of boundary

Average Position of Solid-Liquid Interface
Slip length, b,  to model average position of an interface
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z

z=0

z=-b solid

liquid

Sauerbrey result for trapped “rigid” liquid mass



Pictorial Interpretation 

Negative Slip Length

Crystal

Liquid layer

|b|

Crystal

Liquid acting 
as rigid mass

Crystal

Entrained 
liquid

slip boundary condition

(Sauerbrey “liquid” mass response)

rigid “water” mass layer

(Kanazawa liquid response)

no-slip boundary condition +=



Acoustic Reflection View 

Substrate Supports Standing Waves

Crystalw+|b|

Viscous
EntrainmentCrystalw

Cavity length increases⇒ additional frequency decrease

Limitations on “Slip” B.C./Trapped Mass View
Effectively assuming equal reflectivity at peaks and troughs of topography

Cannot necessarily use additivity of liquid entrainment +  trapped 

mass when incomplete liquid penetration occurs



Order of Magnitude Estimates – QCMs

Effective QCM Cavity Lengths, w

v=fλ     ⇒ ∆w/w = -∆f/f
(v approx constant)

Is Positive ∆f Possible?
Possibly, if effective cavity length decreases due to changes in reflectivity

Incomplete liquid penetration versus liquid penetration?

f = 5 MHz  and  w = 330 µm

∆w | ∆f |
100 Å 150 Hz
100 nm 1.5 kHz
1 µm 15 kHz
10 µm 150 kHz

Crystalw

water
air

Crystalw

water



Super-Hydrophobic Surfaces

Contact Angle
Side view images of droplet

Identical chemical functionality

Different topography

New Sensor Principle
Change hydrophobicity to cause super-hydrophobic transition

Response of QCM/SAW may alter by far more than due to mass change

Physical Cause
Surface roughness/ topography

Incomplete liquid penetration (or)

Greater solid-liquid interfacial area



The End
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